Cambrian Lattices

نویسنده

  • Nathan Reading
چکیده

For an arbitrary finite Coxeter group W , we define the family of Cambrian lattices for W as quotients of the weak order on W with respect to certain lattice congruences. We associate to each Cambrian lattice a complete fan, which we conjecture is the normal fan of a polytope combinatorially isomorphic to the generalized associahedron for W . In types A and B, we obtain, by means of a fiber-polytope construction, combinatorial realizations of the Cambrian lattices in terms of triangulations and in terms of permutations. Using this combinatorial information, we prove that in types A and B the Cambrian fans are combinatorially isomorphic to the normal fans of the generalized associahedra, and that one of the Cambrian fans is linearly isomorphic to Fomin and Zelevinsky’s construction of the normal fan as a “cluster fan.” Our construction does not require a crystallographic Coxeter group and therefore suggests a definition, at least on the level of cellular spheres, of a generalized associahedron for any finite Coxeter group. The Tamari lattice is one of the Cambrian lattices of type A, and two “Tamari” lattices in type B are identified, and characterized in terms of signed pattern avoidance. We also show that intervals in Cambrian lattices are either contractible or homotopy equivalent to spheres. Résumé. Pour un groupe fini arbitraire de Coxeter W , nous définissons la famille des trellis cambriens pour W comme des quotients de l’ordre faible sur W par certaines congruences de trellis. Nous associons à chaque trellis cambrien un éventail complet et nous conjecturons que cet éventail est l’éventail normal d’un polytope isomorphe, au sens combinatoire, á un associèdre généralisé. Dans le cas des types A et B, nous obtenons, par une construction de fibre-polytope, des réalisations combinatoires des trellis cambriens en termes de triangulations et en termes de permutations. En utilisant cette information combinatoire, nous montrons que, dans le cas des types A et B, les éventails cambriens sont isomorphes, au sens combinatoire, aux éventails normaux des associaèdre généralisés, et qu’un des éventails cambriens est linéairement isomorphe à l’éventail normal construit par Fomin et Zelevinsky sous forme de l’éventail des amas. Notre construction n’exige pas que le groupe de Coxeter soit cristallographique et suggère une définition, du moins au niveau des sphères cellulaires, d’un associaèdre généralisé pour tout groupe fini de Coxeter. Le trellis de Tamari est un des trellis cambriens du type A, et deux “trellis de Tamari” dans le type B sont identifiés, et charactérisés en termes des permutations signées à motifs exclus. Nous prouvons également que les intervalles dans les trellis cambriens sont soit contractibles, soit équivalent aux sphéres, par homotopie.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Analogue of Distributivity for Ungraded Lattices

In this paper, we define a property, trimness, for lattices. Trimness is a not-necessarily-graded generalization of distributivity; in particular, if a lattice is trim and graded, it is distributive. Trimness is preserved under taking intervals and suitable sublattices. Trim lattices satisfy a weakened form of modularity. The order complex of a trim lattice is contractible or homotopic to a sph...

متن کامل

Permutrees

Abstract. We introduce permutrees, a unified model for permutations, binary trees, Cambrian trees and binary sequences. On the combinatorial side, we study the rotation lattices on permutrees and their lattice homomorphisms, unifying the weak order, Tamari, Cambrian and boolean lattices and the classical maps between them. On the geometric side, we provide both the vertex and facet descriptions...

متن کامل

A Cambrian Framework for the Oriented Cycle

This paper completes the project of constructing combinatorial models (called frameworks) for the exchange graph and g-vector fan associated to any exchange matrix B whose Cartan companion is of finite or affine type, using the combinatorics and geometry of Coxeter-sortable elements and Cambrian lattices/fans. Specifically, we construct a framework in the unique non-acyclic affine case, the cyc...

متن کامل

Sortable Elements in Infinite Coxeter Groups

In a series of previous papers, we studied sortable elements in finite Coxeter groups, and the related Cambrian fans. We applied sortable elements and Cambrian fans to the study of cluster algebras of finite type and the noncrossing partitions associated to Artin groups of finite type. In this paper, as the first step towards expanding these applications beyond finite type, we study sortable el...

متن کامل

Realizations of the Associahedron and Cyclohedron

We describe many different realizations with integer coordinates for the associahedron (i.e. the Stasheff polytope) and for the cyclohedron (i.e. the Bott-Taubes polytope) and compare them to the permutahedron of type A and B respectively. The coordinates are obtained by an algorithm which uses an oriented Coxeter graph of type An or Bn respectively as only input and which specialises to a proc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004